MITSUBISHI
 Programmable Controller
 ENHANCED F2SERIES

INSTRUCTION MANUAL

F2-60MR

F2-20MR

- This manual provides technical information and guidance on the installation and use of the Mitsubishi F2 series Programmable Controller and its extension unit.
- Users should ensure that the detail of this manual is studied and understood before attempting to install or use the units.
- Information concerning the programming of the system, using a programmer unit, is covered in a separate manual.

These products contain Strategic Products subject to COCOM regulations. They should not be exported without authorization from the appropriate governmental authorities.

MITSUBISHI ELECTRIC CORP.

TABLE OF CONTENTS

1. THE F2 SERIES SYSTEM
1-1 Description of F2 series PC 1
1-2 Basic models of base unit \& extension unit 1
1-3 Extension unit selection 2
1-4 Memory 3
1-5 Basic programming peripherals 4
2. PRELIMINARY WIRINGS
2-1 Power supply 6
2-2 Grounding 8
2.3 RUN/STOP mode terminals 8
2-4 RUN output terminals 8
2-5 DC24V terminals 9
3. INPUT HANDLING
3-1 Example of connections 10
3-2 Input terminals. 10
3-3 Input circuit specifications 11
3-4 Cautions 11
3-5 AC input handlings 12
4. OUTPUT HANDLING
4-1 Relay output models 13
4-2 Triac (SSR) output models 14
4-3 Transistor output models (Sink output) 15
4-4 Transistor output models (Source output) 16
4-5 Output circuit specifications 185. F2-40AC/F2-40AC2 (HIGH SPEED COUNTER INTERFACE) HANDLING5. 1 Imat-ll...

THE F2 SERIES SYSTEM

1-1 DESCRIPTIONS OF THE ENHANCED F2 SERIES PC

The Mitsubishi enhanced F2 series of programmable controllers and auxiliary equipment are higher version models to the F \& F2 series and are ideal for small industrial process control.
The I/O capacity is 120 points max. per unit, but $240 \mathrm{I} / \mathrm{Os}$ can be covered by linkage operation. Now the F2 series is enhanced greatly with additional specialized features and functions. The outlines are as follows, but accordingly peripherals need to be updated. However, when it is used within conventional F2 functions, peripherals need not be updated.

ENHANCED FUNCTIONS

(1) The program capacity is enhanced up to 2000 steps. (Except F2-20M) And in addition to EPROM cassette, EEPROM cassette can be read and written.
(2) Points of state for Step-ladder are enhanced from 40 to 168 points.
(3) 64 points of data register (BCD 3 digit) are added.
(4) Functional instructions are highly enhanced. (Including arithmetic handling)
(5) Special function units can be handled.
*Only CPU card in the base unit is enhanced, so dimensions and Input/Output card are the same as before.
(3) indicates type of output

R: Relay, S: SSR, T: Transistor
(4) specifies power supply voltage rating N/A 100/110VAC, 200/220VAC
U\&UL 110/120VAC, 220/240VAC
E 110/120VAC, 220/240VAC
D 24VDC
(5) indicates type of input/output connections

N/A 24VDC sink input (minus common) and sink output
S 24VDC source input (plus common) and sink output
A1 100/120VAC source input (plus common) and sink output
A2 220/240VAC source input (plus common) and sink output
SS 24VDC source input (plus common) and source output

1-3 EXTENSION UNIT SELECTION

The F2-20M has one extension port, F2-40M has two extension ports and F2-60M has three extension ports where extension units are connected. According to the requirements of I / O numbers and other additional functions, select the appropriate base and extension unit.

1-4 MEMORY

Removing ROM-cassette cover, the select switch is easily accessible.
Turn the switch rightward or leftward according to the memory capacity required. Before changing mode, never fail to turn off the power.

The RAM memory is battery-backed and battery replacement should be as described in the maintenance section 8-3.

Memory Cassettes (For long term storage)

	Capacity	F2-20M	F2-40/60M	
			1k	2k
FROM1	1k	\checkmark	\checkmark	X
F-ROM-2	$2 \times 2 \mathrm{k}$	$2 \times 1 \mathrm{k}$	$2 \times 1 \mathrm{k}$	\checkmark
F-EEPROM-1	1k	\checkmark	\checkmark	X
F-EEPROM2	2k	1k	1k	\checkmark

F-ROM-2 Program Select Switch

PROG No. 0
PROG No. 1

Each program is of 2 K capacity

F-EEPROM Memory Protect Switch

Programming (OFF) Memory protect: (ON)

This is a safety measure against accidental erasure of program.
Normally, it is switched to ON, switch to OFF only for programming.

*Units with serial nos. $85 \square \square \square$ - - or higher have enhanced F2 functions \& 2k RAM. However, EPROM capability remains at 1 k .

With 3 digit programming panels, the following key changes are required to access elements S800 \& S900:

$$
\begin{aligned}
\text { STE } 800 & \rightarrow \text { NB } 800 \\
\text { S } 800 & \rightarrow \text { NOP } 800 \\
\text { R } 800 & \rightarrow \text { END } 800
\end{aligned}
$$

Also panel display:
Step no.

digit not
displayed

Other Peripherals

HIGH SPEED COUNTERS (adaptor port)	2 kHz bidirectional 2 phase counting. (Described in this booklet)
Data Link (adaptor port)	Data transmission between 2 F2-base units. (Described in this booklet)
Analog Input/Output (extension port)	8 -bit A / D and D / A converter. 4 inputs and 2 outputs. Current or voltage mode.
Data Input/Output Unit (adaptor port)	48 input, 48 output multiplexed $1 / O$ points are handled without losing any I/O points of the base or extension unit.
Communication Network Interface (extension port)	Allows F-series controllers to communicate with A-series PLC network. 32 base units can be linked.
Data Access Unit (programmer port)	Displays and sets counter and timer values continuously.
Programmable CAM. switch (extension port)	Absolute position resolver and 32 multiple position switching outputs of accuracy option of 0.5° or 1°. Speed or angle data can be sent to PC.
Pulse Output Unit \& Teach Unit (extension port)	Provides pulse signals to servo or stepper motor driver for easy positional control. Teach unit allows easy positional point programming.

Example of sink DC input (minus common) model
(F2-20/40/60 $\square \square$, F2-20/40/60 $\square \square-U, ~ F 2-40 / 60 \square \square-U L)$

Example of source DC input (plus common) model (F2-20/40/60 $\square \square$-ES)

2-1 POWER SUPPLY

Power supply voltage

Power consumption
DC 24 V output capacity
(External power source)
AC $110 / 120 \mathrm{~V}_{-15 \%}^{+10 \%}$ or AC $220 / 240 \mathrm{~V}_{-15 \%}^{+10 \%} 50 / 60 \mathrm{~Hz}$ (-U, -ES
type models)
AC110/120V $\pm 10 \%$ or $\mathrm{AC} 220 / 240 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}$ (-UL type model)
less than 20VA ($\mathrm{F}_{2}-20$) $24 \mathrm{VA}\left(\mathrm{F}_{2}-40\right)$, 40VA ($\mathrm{F}_{2}-60$)
0.1A (F2-20/40DC input model), 0.2A (F2-60DC input model) (Excluding the power to non-voltage contacts)

Example of sink DC input (minus common) model (F2-20/40/60 $\square \square$-D)

$\#$ Ensure that the input $24+$ IN terminal is connected to the power \oplus terminal as illustrated above.

Example of source DC input (plus common) model (F2-20/40/60 $\square \square$-DS)

\star Ensure that the input $O V$ terminal is connected to the power Θ terminal as illustrated
above.

POWER SUPPLY

Power supply voltage 24VDC $\pm 8 \mathrm{~V}$

2-1-1 Power Supply

(1) Connect a power supply cable of the correct rating to the base unit and extension unit (if used) as illustrated. Supply voltages should be as specified. It is recommended to provide power supply switch which can be used when the ROM cassette is plugged in or off.
(2) The power consumption of the base unit is less than 20VA to F2-20, 25VA to F2-40 and 40VA to F2-60 however, this does not include the power consumption of any external load.
(3) The power must be switched off when the ROM cassette is loaded on the base unit or unloaded from the unit.
(4) The power supply to the extension (if used) shall be connected to same ON/OFF switch for the base unit.

2-1-2 Emergency Stop

Although the PC is designed to switch off all its outputs in emergencies, external safety power switching equipment should be incorporated also.

2-2 GROUNDING

(1) The unit must be grounded as illustrated. The extension unit (if used) must also be grounded with same line of base unit.
(2) Resistance should be less than 100Ω.
(3) Grounding must not be shared with any high power equipment such as a motor system.

2-3 RUN/STOP MODE TERMINALS

(1) These terminals should be connected to key switches or other suitable control devices (push button) as illustrated.
(2) The RUN mode is used when the programmable controller is running a program (controlling a system).
(3) When the STOP mode is used (or there is a power failure of more than 20 msec .), all outputs are turned off and timers, plus the 128 of 192 auxiliary relays are reset. However, all counters and 64 of the auxiliary relays, state relays and some special auxiliary relays are maintained by battery support.
(4) When the 'STOP' switch is on, all outputs will be 'OFF'. However it is recommended that external facilities be provided in case of emergencies to support and back up this facility.
(5) In the case of AC input models, see section 3-5.

If RUN terminal is kept ON by permanent wiring, normally, PC will not leave RUN mode. However, if power is removed and a programming panel is connected in program mode, on return of power, PC will enter program mode and allow alterations to be made to the program.

2-4 RUN OUTPUT TERMINALS ($\left\llcorner\circ-\perp\right.$ or $\left.L _\preceq\right)$ (except F2-20M)

(1) A relay contact is provided between these two terminals inside... The contact is switched on at normal run mode, but is switched off if CPU error might be caused from electrical noise interference, etc It is switched off in STOP mode.
(2) This facility is used to make an emergency stop circuit or warning circuit.
(3) Output load of the relay is less than 35 V . For loads over the rated limit, operation should be performed through an extra relay.

2-5 DC24V TERMINALS

(1) In the case of the sink input (minus common) models, input devices of non-voltage contacts are powered from input terminals and the 24+ terminals provide DC24V power for input sensor devices such as proximity switches or photo sensors.
(2) In the case of the source input (plus common) models, non-voltage contact devices are powered from the 24 V terminals and the 24 V terminals have extra power capacity for the input sensor devices as specified.
(3) If the extension unit is used, connect the DC24V terminals between the base unit and extension unit. The COM terminals are also connected in the same manner.
(4) Any external power must not be supplied to these terminals.

3
 INPUT HANDLING

3-1 EXAMPLE OF CONNECTIONS

(1) Sink input (minus common) models (F2-20/40/60 $\square \square$, F2-20/40/60 $\square \square$-U, F2-40/60 $\square \square$-UL)

(2) Source input (plus common) models (F2-20/40/60 $\square \square$-ES)

3-2 INPUT TERMINALS

Model	Numeric assignment of inputs	Number of inputs	
F2-20	Base unit	Extension unit	per unit
$F_{2}-40$	$400-413$	$414-427$	12 points
	$400-413$	$414-427$	24 points
F2-60	$500-513$	$514-527$	
	$00-13$	$14-27$	
	$400-413$	$414-427$	36 points

:3-3 INPUT CIRCUIT SPECIFICATIONS

		DC24V Input (Sink input minus common)	DC24V Input (Source input plus common)	AC100V Input (Source input plus common)	AC200V Input (Source input plus common)
Input circuit					
Rated input voltage		$\begin{aligned} & \mathrm{DC} 24 \mathrm{~V} \pm 4 \mathrm{~V} \\ & \text { (Self-supply) } \end{aligned}$	$\begin{aligned} & \text { DC24V } \pm 4 V \\ & \text { (Self-supply) } \end{aligned}$	$\begin{aligned} & \text { AC100/120V }+10 \% \\ & (50 / 60 \mathrm{~Hz})-15 \% \end{aligned}$	$\begin{aligned} & \text { AC200/240V }+10 \% \\ & (50 / 60 \mathrm{~Hz})-15 \% \end{aligned}$
Input impedance		Approx. $3.7 \mathrm{k} \Omega$	Approx. $3.7 \mathrm{k} \Omega$ (F2-20) Approx. $4 \overline{\mathrm{k}} \Omega$ ($\mathrm{F} 2-40 / 60$)	$\begin{aligned} & \text { Approx. } 10.6 \mathrm{k} \Omega / 60 \mathrm{~Hz} \\ & (12.6 \mathrm{k} \Omega / 50 \mathrm{~Hz}) \end{aligned}$	Approx. $18.5 \mathrm{k} \Omega / 60 \mathrm{~Hz}$ ($22 \mathrm{k} \Omega / 50 \mathrm{~Hz}$)
Operation current	OFF \rightarrow ON	DC4mA Min.	DC4mA Min.	AC7ma Min.	AC7mA Min
	$\mathrm{ON} \rightarrow \mathrm{OFF}$	DC1.5mA Max.	DC1.5mA Max.	AC2mA Max.	AC2ma Max.
Response time	OFF \rightarrow ON	Approx. 10m.sec	Approx. 10 m .sec	Approx. 15 m sec	Approx. 15 mmec
	ON \rightarrow OFF	Approx. 5 m .sec	Approx. 5m.sec	Approx. 8m sec	Approx. 8 msec
Insulation		Photo-coupler insulation			
Indication		LED turns ON when input is activated.			

3-4 CAUTIONS

(1) Connect input control devices, e.g. limit switches, push buttons, to the input terminations as specified.
(2) In the case of sink input (minus common) models, non-voltage contact devices are powered from the input terminals and the $24 . \mathrm{V}$ terminal points can be used to power external transistors such as proximity switches.
The capacity of 24V DC source is rated by 0.1 Amp (F2-20/40) and 0.2 Amp (F2-60) from 24 V terminal in addition to each 7 mA from all input terminals.
(3) In the case of source input (plus common) models, non-voltage contact devices are powered from the 24 V terminals and the current rating at each input terminal is $24 \mathrm{VDC}, 6 \mathrm{~mA}$. The control devices should be specified accordingly.
The 24 V terminal points can also be used to power external transistors such as proximity switches.
Total of 0.1 Amp (F2-20/40) and 0.2 Amp (F2-60) current by two 24 V terminals can be used for such transistors in addition to each 6 mA supply to all input terminals.
If further more power is requested, use an external power source of 16 to 36 V DC.
The OV terminals are used for negatives of this DC source.
(4) If transistor circuits, such as proximity switches, are connected to input terminals, their parallel resistance should be more than $100 \mathrm{k} \Omega$ and their series resistance less than $1 \mathrm{k} \Omega$.
(5) Three common terminals are connected internally and are common. However, the base and extension unit commons are not linked unless connected together externally as detailed in other section section 2-5.
The common terminal is also used for a negative of 24 V DC source.
(6) For the sake of convenience and appearance and to avoid damage or failure, input wires should be bound or cabled together.
It is recommended that input wires are not longer than 20 meters for the general use. However, the length can be longer but it depends upon the conditions of the noise environment and voltage drop.

- When input devices such as proximity switches or photo sensors are connected to the input terminals, be aware that the leakage current may activate the input signal incorrectly.
Where the leakage current is more than 2 mA , it may prove necessary to provide additional bleeder resistor or $C R$ circuit (e.g. $0.1 \mu \mathrm{~F}+100 \Omega$), otherwise use input devices with low leakage current of less than 2 mA .
- The power supply to the PC can use $110 / 220 \mathrm{VAC}$, however, AC input voltage of 110 VAC or 220 VAC is different according to the model name.
- When AC input type PC and DC input type PC are mixed, (e.g. base unit and extension unit), common terminals of inputs must not be connected together.

4-1 RELAY OUTPUT MODELS (F2-20/40/60 R , $-\square \square$)

F2-20MR

- Connect external load devices e.g. contactors, pilot lamps, solenoid (electromagnetic) valves, etc., to output terminations of the base unit and extension unit (if used).
- As shown in the above figure, four common terminals are provided for the output terminations. As these commons are not linked and cover each four output terminals in their block, different types of power can be used as shown in the above example as far as the output terminals in a block share one type of power.
- Normal open relay contacts are connected internally to the output terminals on the base and extension units. The ratings of the contacts are 2A at 24 V DC, $110 / 120 \mathrm{~V} \mathrm{AC}, 220 / 240 \mathrm{~V}$ AC. These ratings apply for resistive loads ($\operatorname{COS} \phi=1.0$).
The durability data of output relays is stated in another section (4-5).
- Each internal contact is protected by a residual current circuit. When the contact is closed, its current leakage will normally be less than 1.1 mA at 220 V AC or 0.55 mA at 110 V AC.
However, it is possible that this might have some effect on external loads.
Where the external current demand is very low, it may prove necessary to provide additional parallel resistance because of the influence of leakage (see section 4-5).
- When using the controller in a direct current circuit, it is recommended to connect a free wheel diode in parallel to the inductive load.
- Type-UL Output is 72VA, at 120/240V AC. (2A for resistive load)

4-2 TRIAC (SSR) OUTPUT MODELS (F2-20/40/60■S, - $\square \square$)

F2-20MS

- Connect external load devices e.g. contactors, pilot lamps, solenoid (electromagnetic) valves, etc., to output terminations of the base unit and extension unit (if used).
- As shown in the last figure, common terminals are provided for the output terminations.

As these commons are not linked and cover each four output terminals in their block, different types of power can be used as shown in the above example as far as the output terminals are in a block share of one type of power.

- The load limitation of the triac (SSR) outputs is 1 A for each individual output, but the total collective output load should not exceed 8 A across all 16 outputs at AC 110/120V or AC 220/ 240 V .
- For inductive loads, the rated coil of magnetic contactors should be within 50VA at AC 110/ 120 V or 100 VA at $\mathrm{AC} 220 / 240 \mathrm{~V}$. If the coil load is over these limits, then an external relay will be required. For lamp loads above 100 W , an external relay will also be required.
- Each triac (SSR) inside the unit will withstand moderate surge currents, and is protected by a residual current circuit. With the triac 'off' current leakage is less than 1.2 mA at $A C 120 \mathrm{~V}$ or 2.2 mA at $A C 220 \mathrm{~V}$. However, it is possible that this might have some effect on external loads. It is not possible to operate triac output card on DC loads.

4-3 TRANSISTOR OUTPUT MODELS (F2-20/40/60 \square, $-\square$) SINK OUTPUT TYPE

F2-20MT

- Connect external load devices e.g. contactors, pilot lamps, solenoid (electromagnetic) valves, etc., to output terminations of the base unit and extension unit.
- The load limitation of the transistor outputs is 1 A for each individual output, but the collective output load should not exceed 2A per 4 points at DC 24 V .
- Due to surge current limitations lamp loads should be within 3W.
- When other loads are connected to an output termination in addition to lamp load, the total output load to this termination should be as specified with reference to the following table.

Lamp load	Additional Load
2 W	6 W
1 W	16 W
0	24 W

- The external DC power supply should be DC $24 \mathrm{~V}+15 \% /-30 \%$.
- 2A rated back-up fuses or protectors are recommended per each four outputs to prevent damage to the circuit boards of the PC in the event of a short circuit fault in one of the external circuits.

4-4 TRANSISTOR OUTPUT MODELS (F2-20/40/60 \square T- $\square S S$) SOURCE OUTPUT TYPE

F2-20MT

$\mathrm{F}_{2}-40$																	
$\begin{gathered} 24 \mathrm{~V} \\ \mathrm{DC} \oplus \end{gathered}$	430	431	432	433	434	435	436	437	530	531	532	533	534	535	536	537	$\begin{gathered} 24 \mathrm{~V} \\ \mathrm{DC} \Theta \end{gathered}$

F2-60MT

F2-60ET

	40	42	44	6	440 44	4244	$44 \mid 44$	46	540\|54	2254	445	46		
$\begin{gathered} 24 \mathrm{~V} \\ \mathrm{DC} \oplus \\ \hline \end{gathered}$	41	43	45	47	441	443	445	447	541	543	545	547	$\begin{gathered} 24 V \\ \operatorname{DC} \Theta \\ \hline \end{gathered}$	

- Connect external load devices e.g. contactors, pilot lamps, solenoid (electromagnetic) valves, etc., to output terminations of the base unit and extension unit (if used).
- The load limitation of the transistor outputs is 1 A for each individual output, but the collective output load should not exceed 2A per 4 points at DC 24 V .
- Due to surge current limitations lamp loads should be within 3W.
- When other load are connected to a single output termination in addition to lamp load, the total output load to this termination should be as specified with reference to following table.

Lampload	Additional Load
2 W	6 W
1 W	16 W
0	24 W

- The external DC power supply should be DC $24 \mathrm{~V}+15 \% /-30 \%$.
- 2A rated back-up fuses or protectors are recommended per each four outputs to prevent damage to the circuit boads of the PC in the event of a short circuit fault in one of the external circuits.

4.5 OUTPUT CIRCUIT SPECIFICATIONS

			Relay Output	Triac Output	Transistor Output (Sink output)	Transistor Output (Source output)
Output circuit						
External power source			Less than 250 VAC /30VDC	80-240VAC	$24 \mathrm{VDC}_{-30 \%}^{+10 \%}$	$24 V D C_{-30 \%}^{+10 \%}$
	Rated output current (Resistance load)		2A/point	1A/point but 2A per 4 points total	1A/point but 2A per 4 points total	1 A/point but 2A per 4 points total
	Inductive load		Detailed below	50VA (110/120VAC) 100VA (220/240VAC)	24W (24VDC)	24W (24VDC)
	Lamp load		100W	100W	3W (Detailed in Section 4-3)	3W (Detaited in Section 4-4)
Rush current			10A/Cycle	10A/Cycle	5A/10ms	5A/10ms
Leakage current			$0.55 \mathrm{~mA} / 110 \mathrm{VAC}$ 1.1mA/220VAC	$1.1 \mathrm{~mA} / 110 \mathrm{VAC}$ 2.2mA/220VAC	-	-
Min. Load (Inductive load)			$0.2 \mathrm{VA} / 110 \mathrm{AC}$ $0.8 \mathrm{VA} / 220 \mathrm{VAC}$	$\begin{aligned} & 0.4 \mathrm{VA} / 110 \mathrm{VA} \\ & 1.6 \mathrm{VA} / 220 \mathrm{VAC} \end{aligned}$	-	-
Response time		$\mathrm{OFF} \rightarrow \mathrm{ON}$	Approx. 5m.sec	Less than 1m.sec	Less than $1 \mathrm{~m} . \mathrm{sec}$	Less than $1 \mathrm{~m} . \mathrm{sec}$
		$\mathrm{ON} \rightarrow$ OFF	Approx $10 \mathrm{~m} . \mathrm{sec}$	$10 \mathrm{~m} . \sec$ Max.	Less than 1m.sec	Less than 1 m .sec
Circuit insulation			Relay insulation	Photo-triac	Photo-coupler	Photo-coupler
Indications			LED (When relay coil is activated)	LED When triac is activated)	LED (When photocoupler is activated)	LED (When photo. coupler is activated)

* If lower supply voltage is used: load current $=0.5 \mathrm{~A} /$ point (12 VDC), $2.5 \mathrm{~mA} /$ point (5 VDC) or less

The basic unit and extension unit have the output power ratings indicated in the above table. For loads over the rated maximum limits shown, operation should be performed through an extra relay, capable of handling the load. Loads under the minimum limits shown will need an additional surge absorber circuit (approx. $0.1 \mu \mathrm{~F}+100 \Omega$) to prevent incorrect operation due to leakage currents flowing in the output circuits.

Overload Protection

Back-up fuses or circuit protectors are recommended on output circuits to prevent damage to the circuit boards of the PC in the event of a short circuit fault in an external output circuit.

Inductive Load of Relay Output

Applicable loads to the output relays are subject to the no. of operations. According to our life test data, the following are gives a reference of the relay durability level;

Inductive Load	No. of Operations
Less than 35VA	UP to $3,000,000$
Less than 80 VA	UP to $1,000,000$
Less than 120 VA	Up to 200,000

Manufacturer's guaranty level: 500,000 operations at 35VA

5
 $F_{2}-40 A C / F_{2}-40 A C_{2}(H I G H$ SPEED COUNTER INTERFACE) HANDINGS

5-1 INSTALLATION

5-2 F2-40AC CONNECTIONS OF INPUT CIRCUIT

Pulse: 2 KHz Max
(ON: 0.25 ms, OFF: 0.25 ms)

5-3 INDICATIONS AND DIP-SWITCH SETTINGS

LED indications:
1 Mode selection (M470)
2 Up/down selection (M471)
3 Start (M472)
4 Input signal

DIP switch settings:
SW1 \qquad Switch ON only when 5VDC is used for input device.
SW2 Switch ON only when 12VDC is used for input device.
SW3 Switch ON only when 24VDC is used for input device.
SW4 \qquad Switch ON only when input filter is required.

5-4 F2-40AC2 CONNECTIONS OF INPUT CIRCUIT

5-5 INDICATIONS

LED indications:
(1) Mode selection (M470)
(2) Up/down selection (M471)
(3) Start (M472)
(4) Phase A
(5) Phase B Input signals
(6) Phase Z

UP COUNT
DOWN COUNT

Phase A \square Phase A \square ON
Phase B \qquad Phase B \qquad ON

F2-40AW/AP(PC LINK INTERFACE) HANDLINGS

6-1 F2-40AW (WIRE LINK) INSTALLATION

(1) Attach the unit to the PC in the same manner as the F2-40AC (Section 5-1).
(2) Connect two units with a twist-pair cable as illustrated (SA to SA, SB to SB), and both ends of sealing twist are connected to the earth terminals of the PCs.
(3) The cable length shall be less than 10 meters (approx. 35 feet) and keep away from high voltage supply cables or other such electrical apparatus to avoid electrical noise interference.

6-2 F2-40AP (OPTICAL FIBER LINK) INSTALLATION

(1) Attach the unit to the PC in the same manner as the F2-40AC (Section 5-1).
(2) Connect two units with optical plastic fiber fables as illustrated (R to T, T to R).
(3) The cable length shall be less than 50 meters (approx. 160 feet).
(4) The optical fiber cables and optical connectors are not included in the attachment. The material specifications and supply should be inquired to a Mitsubishi agent.

LED indications:
1 Power supply
2 Linkage RUN
3 Signal transmission
4 Transmission error

DIP switch settings:
SW1 Switch OFF at all times.
SW2 Switch ON at all times.
SW3 Since two PC units must be identified for the signal handlings mentioned in the next section 6-4, the SW3 makes identifications of both PCs as follows:

ON Side A PC (Master)
OFF...... Side B PC (Slave)
SW4 Switch ON to transmit 32 points of signals or switch OFF to transmit 16 points of signals.

6-4 SIGNAL TRANSMISSION

For the linkage operations of two PCs, certain auxiliary relays are shared with both PCs and the signal transmissions are as follows:
(1) 32 Points Transmission

Side B (Slave) PC

Side B PC can activate the auxiliary relays M100-M137 subjectively and Side A PC receives the data to share with the contacts in the program. On the other hand auxiliary relays M140-M177 are activated by Side A PC and the data is shared by Side B PC and used in its program. (Auxiliary relay M100-M137 cannot be activated by Side A PC and M140-177 cannot be activated by Side B PC.)

Side B (Slave) PC

In the same manner as 32 point transmission, auxiliary relays M100-M117 are activated by Side B PC and M140-157 is activated by Side A PC.

Ref. 1) Linkage operation of $32 / 16$ points is also available. But the auxiliary relays of which data is expected to receive from another PC must not be activated as an output coil.
2) It takes approx. 7.2 msec for the signal transmission between the PCs. Maximum delay time of signal transmission is 7.2 msec plus execution time of the PC.

7-1 INSTALLATION

(1) The base unit and extension unit can be mounted with suitable screws direct to any flat surface by using the four corner holes provided.
DIN rail mounting kit is available for F2-20 and F2-40 models.
(2) Do not attempt to install the equipment on the floor surface or ceiling to avoid temperature rise.
Install the equipment on the wall surface.
(3) When mounting the unit on the wall surface, beware of conductive trashes falling into the unit through the ventilation opening etc. Conductive trashes may cause damage to the circuit boards of the PC or cause operation failure.

7-2 EXTENSION CABLE

(1) Extension cable of 0.45 meter (1.47 feet) length is attached with the F2-20E, and extension cables of 0.6 meter (1.97 feet) length are attached with the F2-40E and F2-60E unit.
(2) The extension cables used to connect the basic unit and an extension unit should be kept separate from any other cables or wires by a distance of 30 mm (1.2 inch) at least.
(3) I/O assignment numbers e.g. $00,400,500$ are marked to each extension port, and the ports with same number shall be connected between the base unit and extension unit.
Labels of 00,400 and 500 are attached to the base unit for the usage of F-4T, F-10ER or F-20E.

7-3 ENVIRONMENT

While the F series PC is suitable for most industrial situations, it should not be used in excessively hostile environments associated with extremes of damp, dust, temperature, corrosive gases, vibration or mechanical impact. The unit should not be installed in a situation where the temperature is likely to rise to above $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ and a space of some 50 mm (2 inches) should be allowed around the unit for heat dissipation.

7-4 ELECTRICAL NOISE INTERFERENCE

To avoid electrical noise interference from some external apparatus, the unit should not be installed near high voltage supply cables or other such electrical apparatus. Input and output wires must be kept separate and away from any power supply cables or high voltage cables.

7.5 WIRINGS

(1) For the sake of convenience and appearance and to avoid damage or failure, input wires should be bound or cable together as well as output wires.
(2) It is recommended that input and output wires are not longer than 20 meters (65 feet) for the general use. However the length can be longer but depends upon the conditions of the noise environment and voltage drop.
(3) DC cable and AC cable should not be bound together.
(4) External emergency stop circuit or interlocks for dangerous contactor such as forward/reverse should be provided in addition to the PC sequence.
(5) If internal power fuse should be cut in a event of wrong voltage supply, the fuse replacement may not recover the unit.

7-6 PERIPHERAL INSTALLATION

(1) The power must be switched off when the ROM cassette is loaded or unloaded.
(2) When F2-20P-E or F1-20P-E or F-20P-E is plugged on the PC during the PC power is ON. The slide switch of the programme must be MONITOR mode for normal correct operation. (exception in section 2-3)

8-1 PRELIMINARY CHECKS

Before operating the unit, it is advisable to carry out the following checks:
a. That the power and ground leads are properly connected.
b. That input and output leads are properly connected and not entangled. (It is worthwhile numbering each load according to is input and output assignment.)
c. That output loads and input contacts are within the specification limits detailed earlier.
d. That program/monitor mode on the programming panel and RUN/STOP mode on the base unit are properly set.
e. That the extension cable is properly connected.
f. Programmes can be checked and monitored by using the facility available on the programming panel for this purpose.

8-2 DIAGNOSIS

The base unit's LEDs enable the following conditions to be checked:
(1) Power Supply Indication

LED illumination indicates that the power is 'on'. If the LED fails to illuminate when the unit is under apparent power, open the fuse cover and check the fuse. If the PC will not recover, the unit may be faulty.
(2) Run Indication (CPU mode):

When LED do not turn on when external settings are apparently correct, remove programming panel and check the following:
a. Check STOP terminal has not been activated. STOP terminal has priority over RUN.
b. Check the RUN terminal has correct logic voltage.
c. Check power supply is of the correct level with a voltmeter.
d. Software error will not allow CPU to enter RUN mode, try a simple program after erasing program memory.
(3) Battery

If the battery LED illuminates, replace the battery immediately. A special auxiliary relay M76 is turned ON when battery level is low.
(4) Program Error Indication

CPU ERROR LED flickers when following errors are caused:

1) Programming erroris
a. Timer or counter without constant K
b. Grammatic error in a program
c. Circuit error in a program
2) Battery voltage drop
3) Sum-check error, which may be caused by noise interference or conductive debris falling into the unit.
In this case, check the program, battery voltage indication, electrical noise source or posibility of conductive debris, and try to operate again after the power reset.
(5) CPU Error Indication

CPU ERROR LED is turned ON in following cases:

1) CPU execuion error is caused by noise interference or conductive trashes fallen into the unit.
2) ROM cassette is loaded or unloaded when the PC power is turned ON.
3) Watch-dog timer error is caused if program execution time is more than 0.07 second.
a. In this case, turn the PC power OFF and switch ON again (power reset). If the PC operation is recovered, check the electrical noise source or possibility of conductive trashes.
b. If the CPU ERROR LED flickers after power reset, check the program error in the same manner as former item (Section 8-2(4)).
c. If the CPU ERROR LED is still turned ON, check the program execution time.
(6) Input Indications

When the input LEDs fail to illuminate, check the ON/OFF status in the program with programmer, and check whether input switching device works properly. Beware the following possibilities:
a. If current rating of input device is too large, contact error may be caused.
b. When the bleed resistor for external LED indication is provided in parallel to the input device, the PC input may be turned $O N$ incorrectly because of the leakage current.
c. The PC may not accept the input signal which is shorter than PC execution time.
d. When output of internal 24 V power for sensor is overloaded or short-circuited, protective circuit inside PC will work and automatically the voltage will drop, and accordingly, all inputs will not be accepted.
In this case, release wirings from $24+$ terminal.
e. With the F2-40/60 type, contact error of input terminal block may occur. So when returning the terminal block remember to fasten it again.
(7) Output Indication

If outputs fail to function, the following cases might be the cause:
a. When very low current device is connected to the relay output or triac output PC models, the output device may be activated incorrectly because of the PC leakage current.
b. The short circuit and large current load may cause the damage of the PC relay contact or damage of triac and transistor devices in the PC, thus, output failure.
c. With the F2-40/60 type, contact error of otuput terminal block may occur. So when returning the terminal block remember to fasten it again.
It is possible that the errors are inter-linked, e.g. low power levels can affect many things. Thus consider all the possibilities of the diagnostic list. If the fault is not found even after following the suggested diagnostic checks, please refer to a Mitsubishi Service agent.

8-3 MAINTENANCE

(1) Periodical Check

The PC contain maintenance-free components except for a lithium battery and sometimes output relays. The battery life is approx. 5 years (1 year warrantly) and relay life is subjected to the frequency of operations and current level (see the section of output handling).
The battery is replaced in the manner stated below (2).
The units installation should be checked to ensure that it has not been contaminated by dust or other contaminations, also that all terminal connections are still tight.
The unit should not be installed in a situation where the temperature is likely to rise to above $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.
(2) Battery Renewal
a. The program RAM memory and a part of software functions are backed by a non-chargeable lithium battery, of which discharge life is more than five years (1 year warrantly). When the battery voltage runs low, LED indicator on the base unit is illuminated. However, regardless of its condition, it is recommended that the battery be replaced every five years.
b. To renew the battery, remove a panel cover of the base unit and renew the battery within 30 seconds, while an inside capacitor supports the memories. (In this way program will remain)

SPECIFICATIONS

General Specifications

```
Power supply
AC110~ 120/AC220~240 V +10% 50/60Hz (-U, -ES Type)
AC110~120/AC220~240V }\pm10% 50/60Hz (-UL Type)
DC24V }\pm8V (-D,-DS Type
Consumption
Power-failure compensation
Ambient temperature
Storage temperature
Ambient humidity
Vibration resistance
Insulation resistance: : 5M \Omega (500VDC)
Insulation withstand voltage
Noise immunity : : 1000V,1\musec.
Noise spike : NEMA-1CS2-230
```


CPU Memory

Method	Stored program, Repeated arithmetic
Program language	Relay and logic symbols (ladder)
Instructions	$\left.\begin{array}{llr}: & \text { Sequential instructions : } & 20 \\ & \text { Step-ladder instructions: } & 2 \\ & \text { Functional instructions : } 165\end{array}\right\}$
Program capacity	2000 steps (F2-40, 60M), 1000 steps (F2-20M)
Execution speed	Average $7 \mu \mathrm{sec} / \mathrm{step}$
Memory	C-MOS RAM standard, EP-ROM, EEP-ROM option
CPU	: $\mu \mathrm{p} 8031$
Self-diagnostics	: Program-check, watch-dog timer, battery voltage. power supply voltage, etc.
Battery	: Lithium battery

तFunctional Spec.

רUTLINE AND DIMENSIONS
mm (inch)

F2-20E EXTENSION UNIT

F2-60M BASE UNIT

F2-40M BASE UNIT

F2-60E EXTENSION UNIT

F2-40E EXTENSION UNIT

